Affiliation:
1. Key Laboratory of Textile Fiber and Products Ministry of Education Wuhan Textile University Wuhan 430200 China
2. Multifunctional Electronic Ceramics Laboratory College of Engineering Xi'an International University Xi'an 710077 China
3. College of Science Wuhan University of Science and Technology Wuhan 430081 China
Abstract
AbstractEstablishing an advanced ecosystem incorporating freshwater harvesting, plastic utilization, and clean fuel acquisition is profoundly significant. However, low‐efficiency evaporation, single energy utilization, and catalyst leakage severely hinder sustainable development. Herein, a nanofiber‐based mortise‐and‐tenon structural Janus aerogel (MTSJA) is strategically designed in the first attempt and supports Z‐scheme catalysts. By harnessing of the upper hydrophilic layer with hydrophilic channels embedding into the hydrophobic bottom layer to achieve tailoring bottom wettability states. MTSJA is capable of a fully‐floating function for lower heat loss, water supply, and high‐efficiency solar‐to‐vapor conversion. Benefiting from the ultrasonic cavitation effect and high sensitivity of materials to mechanical forces, this is also the first demonstration of synergistic solar and ultrasound fields to power simultaneous evaporation desalination and waste plastics as reusable substrates generating fuel energy. The system enables persistent desalination with an exceptional evaporation rate of 3.1 kg m−2 h−1 and 82.3% efficiency (21 wt.% NaCl solution and 1 sun), and realizes H2, CO, and CH4 yields with 16.1, 9.5, and 3 µmol h−1 g−1, respectively. This strategy holds great potential for desalination and plastics value‐added transformation toward clean energy and carbon neutrality.
Funder
China Postdoctoral Science Foundation
National Natural Science Foundation of China