3D Printed Conformal Strain and Humidity Sensors for Human Motion Prediction and Health Monitoring via Machine Learning

Author:

Hou Yanbei12ORCID,Gao Ming12,Gao Jingwen2,Zhao Lihua13,Teo Edwin Hang Tong4,Wang Dong5,Qi H. Jerry6ORCID,Zhou Kun12ORCID

Affiliation:

1. HP‐NTU Digital Manufacturing Corporate Lab School of Mechanical and Aerospace Engineering Nanyang Technological University Singapore 639798 Singapore

2. Singapore Centre for 3D Printing School of Mechanical and Aerospace Engineering Nanyang Technological University Singapore 639798 Singapore

3. 3D Lab HP Labs HP Inc. Palo Alto CA 94304 USA

4. School of Electrical and Electronic Engineering Nanyang Technological University Singapore 639798 Singapore

5. School of Mechanical Engineering Shanghai Jiao Tong University Shanghai 200240 China

6. The George Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta GA 30332 USA

Abstract

AbstractWearable sensors have garnered considerable attention due to their flexibility and lightweight characteristics in the realm of healthcare applications. However, developing robust wearable sensors with facile fabrication and good conformity remains a challenge. In this study, a conductive graphene nanoplate‐carbon nanotube (GC) ink is synthesized for multi jet fusion (MJF) printing. The layer‐by‐layer fabrication process of MJF not only improves the mechanical and flame‐retardant properties of the printed GC sensor but also bolsters its robustness and sensitivity. The direction of sensor bending significantly impacts the relative resistance changes, allowing for precise investigations of joint motions in the human body, such as those of the fingers, wrists, elbows, necks, and knees. Furthermore, the data of resistance changes collected by the GC sensor are utilized to train a support vector machine with a 95.83% accuracy rate for predicting human motions. Due to its stable humidity sensitivity, the sensor also demonstrates excellent performance in monitoring human breath and predicting breath modes (normal, fast, and deep breath), thereby expanding its potential applications in healthcare. This work opens up new avenues for using MJF‐printed wearable sensors for a variety of healthcare applications.

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3