Enhanced Bacterial Cuproptosis‐Like Death via Reversal of Hypoxia Microenvironment for Biofilm Infection Treatment

Author:

Luo Zhiyuan1,Lu Renjie1,Shi Tingwang1,Ruan Zesong1,Wang Wenbo1,Guo Zhao1,Zhan Zeming1,Ma Yihong1,Lian Xiaofeng1,Ding Cheng1,Chen Yunfeng1ORCID

Affiliation:

1. Department of Orthopedic Surgery Shanghai Institute of Microsurgery on Extremities Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine 600 Yishan Road Shanghai 200233 China

Abstract

AbstractA recently emerging cell death pathway, known as copper‐induced cell death, has demonstrated significant potential for treating infections. Existing research suggests that cells utilizing aerobic respiration, as opposed to those reliant on glycolysis, exhibit greater sensitivity to copper‐induced death. Herein, a MnO2‐loaded copper metal–organic frameworks platform is developed denoted as MCM, to enhance bacterial cuproptosis‐like death via the remodeling of bacterial respiratory metabolism. The reversal of hypoxic microenvironments induced a cascade of responses, encompassing the reactivation of suppressed immune responses and the promotion of osteogenesis and angiogenesis. Initially, MCM catalyzed O2 production, alleviating hypoxia within the biofilm and inducing a transition in bacterial respiration mode from glycolysis to aerobic respiration. Subsequently, the sensitized bacteria, characterized by enhanced tricarboxylic acid cycle activity, underwent cuproptosis‐like death owing to increased copper concentrations and aggregated intracellular dihydrolipoamide S‐acetyltransferase (DLAT). The disruption of hypoxia also stimulated suppressed dendritic cells and macrophages, thereby strengthening their antimicrobial activity through chemotaxis and phagocytosis. Moreover, the nutritional effects of copper elements, coupled with hypoxia alleviation, synergistically facilitated the regeneration of bones and blood vessels. Overall, reshaping the infection microenvironment to enhance cuproptosis‐like cell death presents a promising avenue for eradicating biofilms.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3