Affiliation:
1. Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 P. R. China
2. Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) Tianjin University Tianjin 300072 P. R. China
3. Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
Abstract
AbstractCatalytic asymmetric hydroboration of fluoroalkyl‐substituted alkenes is a straightforward approach to access chiral small molecules possessing both fluorine and boron atoms. However, enantioselective hydroboration of fluoroalkyl‐substituted alkenes without fluorine elimination has been a long‐standing challenge in this field. Herein, a copper‐catalyzed hydroboration of difluoroalkyl‐substituted internal alkenes with high levels of regio‐ and enantioselectivities is reported. The native carbonyl directing group, copper hydride system, and bisphosphine ligand play crucial roles in suppressing the undesired fluoride elimination. This atom‐economic protocol provides a practical synthetic platform to obtain a wide scope of enantioenriched secondary boronates bearing the difluoromethylene moieties under mild conditions. Synthetic applications including functionalization of biorelevant molecules, versatile functional group interconversions, and preparation of difluoroalkylated Terfenadine derivative are also demonstrated.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Subject
General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献