Graph Theoretical Description of Phase Transitions in Complex Multiscale Phases with Supramolecular Assemblies

Author:

Yang Ruochen12,Bernardino Kalil3,Xiao Xiongye12,Gomes Weverson R.3,Mattoso Davi A.3,Kotov Nicholas A.24,Bogdan Paul12,de Moura André F.3ORCID

Affiliation:

1. Ming Hsieh Department of Electrical and Computer Engineering University of Southern California Los Angeles CA 90089 USA

2. Center of Complex Particle Systems (COMPASS) Ann Arbor MI 48109‐2102 USA

3. Department of Chemistry Federal University of São Carlos São Carlos SP 13565‐905 Brazil

4. Department of Chemical Engineering Department of Materials Science and Engineering Biointerfaces Institute University of Michigan Ann Arbor MI 48109‐2102 USA

Abstract

AbstractPhase transitions are typically quantified using order parameters, such as crystal lattice distances and radial distribution functions, which can identify subtle changes in crystalline materials or high‐contrast phases with large structural differences. However, the identification of phases with high complexity, multiscale organization and of complex patterns during the structural fluctuations preceding phase transitions, which are essential for understanding the system pathways between phases, is challenging for those traditional analyses. Here, it is shown that for two model systems— thermotropic liquid crystals and a lyotropic water/surfactant mixtures—graph theoretical (GT) descriptors can successfully identify complex phases combining molecular and nanoscale levels of organization that are hard to characterize with traditional methodologies. Furthermore, the GT descriptors also reveal the pathways between the different phases. Specifically, centrality parameters and node‐based fractal dimension quantify the system behavior preceding the transitions, capturing fluctuation‐induced breakup of aggregates and their long‐range cooperative interactions. GT parameterization can be generalized for a wide range of chemical systems and be instrumental for the growth mechanisms of complex nanostructures.

Funder

Defense Sciences Office, DARPA

National Science Foundation

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3