Atomically Engineered Defect‐Rich Palladium Metallene for High‐Performance Alkaline Oxygen Reduction Electrocatalysis

Author:

Zhao Yupeng12,Chen Zhengfan12,Ma Nana3,Cheng Weiyi3,Zhang Dong4,Cao Kecheng4,Feng Fan12,Gao Dandan12,Liu Rongji125,Li Shujun3,Streb Carsten125ORCID

Affiliation:

1. Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10–14 55128 Mainz Germany

2. Institute of Inorganic Chemistry I Ulm University Albert‐Einstein‐Allee 11 89081 Ulm Germany

3. Henan Key Laboratory of Boron Chemistry and Advanced Materials School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China

4. School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China

5. Helmholtz‐Institute Ulm Electrochemical Energy Conversion Helmholtzstr. 11 89081 Ulm Germany

Abstract

AbstractDefect engineering is a key chemical tool to modulate the electronic structure and reactivity of nanostructured catalysts. Here, it is reported how targeted introduction of defect sites in a 2D palladium metallene nanostructure results in a highly active catalyst for the alkaline oxygen reduction reaction (ORR). A defect‐rich WOx and MoOx modified Pd metallene (denoted: D‐Pd M) is synthesized by a facile and scalable approach. Detailed structural analyses reveal the presence of three distinct atomic‐level defects, that are pores, concave surfaces, and surface‐anchored individual WOx and MoOx sites. Mechanistic studies reveal that these defects result in excellent catalytic ORR activity (half‐wave potential 0.93 V vs. RHE, mass activity 1.3 A mgPd−1 at 0.9 V vs. RHE), outperforming the commercial references Pt/C and Pd/C by factors of ≈7 and ≈4, respectively. The practical usage of the compound is demonstrated by integration into a custom‐built Zn‐air battery. At low D‐Pd M loading (26 µgPd cm−2), the system achieves high specific capacity (809 mAh gZn−1) and shows excellent discharge potential stability. This study therefore provides a blueprint for the molecular design of defect sites in 2D metallene nanostructures for advanced energy technology applications.

Funder

China Scholarship Council

Ministeriums für Wissenschaft, Weiterbildung und Kultur, Rheinland-Pfalz

Gutenberg Forschungskolleg

Henan Province Science and Technology Innovation Talent Program

Natural Science Foundation of Henan Province

Carl-Zeiss-Stiftung

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3