Fully Integrated Microfluidic Platform for Multiplexed Detection of Hunov by a Dynamic Confined‐Space‐Implemented One‐Pot Rpa‐Lamp System

Author:

Chen Fumin1,Lyu Chenang2,Li Zhao34,Xiu Leshan1,Li Huimin1,Xie Yi1,Cao Runzhen1,Hu Qinqin1,Yin Kun1ORCID

Affiliation:

1. School of Global Health Chinese Center for Tropical Diseases Research Shanghai Jiao Tong University School of Medicine Shanghai 200025 P. R. China

2. Department of Food Science and Technology School of Agriculture and Biology Shanghai Jiao Tong University Shanghai 200240 P. R. China

3. Stake Key Laboratory on Integrated Optoelectronics Institute of Semiconductors Chinese Academy of Sciences Beijing 100083 P. R. China

4. College of Materials Science and Opto‐Electronic Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China

Abstract

AbstractHuman norovirus (HuNoV) is the leading cause of nonbacterial acute gastroenteritis, which is highly infectious, rapidly evolving, and easily transmitted through feces. The accurate and early detection of HuNoV subtypes is essential for effective treatment, early surveillance, risk assessment, and disease prevention. In this study, a portable multiplex HuNoV detection platform that combines integrated microfluidics and cascade isothermal amplification, using a streamlined protocol for clinical fecal‐based diagnosis is presented. To overcome the problems of carryover contamination and the incompatibility between recombinase polymerase amplification (RPA) and loop‐mediated isothermal amplification (LAMP), a Dynamic confined‐space‐implemented One‐pot RPA‐LAMP colorimetric detection system (DORLA) is developed by creating a hydrogen bond network. The DORLA system exhibits excellent sensitivity, with detection limits of 10 copies µL−1 and 1 copy µL−1 for HuNoV GI and GII, respectively. In addition, a portable diagnostic platform consisting of a thermostatic control module and an integrated 3D‐printed microfluidic chip for specific HuNoV capture, nucleic acid pretreatment, and DORLA detection, which enables simultaneous diagnosis of HuNoV GI and GII is developed. A DORLA‐based microfluidic platform exhibits satisfactory performance with high sensitivity and portability, and has high potential for the rapid point‐of‐care detection of HuNoV in clinical fecal samples, particularly in resource‐limited settings.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai Municipality

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3