Affiliation:
1. Department of Chemistry Indiana University 800 E Kirkwood Ave Bloomington IN 47405 USA
Abstract
AbstractMany biocatalytic processes inside cells employ substrate channeling to control the diffusion of intermediates for improved efficiency of enzymatic cascade reactions. This inspirational mechanism offers a strategy for increasing efficiency of multistep biocatalysis, especially where the intermediates are expensive cofactors that require continuous regeneration. However, it is challenging to achieve substrate channeling artificially in vitro due to fast diffusion of small molecules. By mimicking some naturally occurring metabolons, nanoreactors are developed using P22 virus‐like particles (VLPs), which enhance the efficiency of nicotinamide adenine dinucleotide (NAD)‐dependent multistep biocatalysis by substrate channeling. In this design, NAD‐dependent enzyme partners are coencapsulated inside the VLPs, while the cofactor is covalently tethered to the capsid interior through swing arms. The crowded environment inside the VLPs induces colocalization of the enzymes and the immobilized NAD, which shuttles between the enzymes for in situ regeneration without diffusing into the bulk solution. The modularity of the nanoreactors allows to tune their composition and consequently their overall activity, and also remodel them for different reactions by altering enzyme partners. Given the plasticity and versatility, P22 VLPs possess great potential for developing functional materials capable of multistep biotransformations with advantageous properties, including enhanced efficiency and economical usage of enzyme cofactors.
Funder
National Science Foundation
Subject
General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献