Enhancing Multistep Reactions: Biomimetic Design of Substrate Channeling Using P22 Virus‐Like Particles

Author:

Wang Yang1ORCID,Selivanovitch Ekaterina1,Douglas Trevor1ORCID

Affiliation:

1. Department of Chemistry Indiana University 800 E Kirkwood Ave Bloomington IN 47405 USA

Abstract

AbstractMany biocatalytic processes inside cells employ substrate channeling to control the diffusion of intermediates for improved efficiency of enzymatic cascade reactions. This inspirational mechanism offers a strategy for increasing efficiency of multistep biocatalysis, especially where the intermediates are expensive cofactors that require continuous regeneration. However, it is challenging to achieve substrate channeling artificially in vitro due to fast diffusion of small molecules. By mimicking some naturally occurring metabolons, nanoreactors are developed using P22 virus‐like particles (VLPs), which enhance the efficiency of nicotinamide adenine dinucleotide (NAD)‐dependent multistep biocatalysis by substrate channeling. In this design, NAD‐dependent enzyme partners are coencapsulated inside the VLPs, while the cofactor is covalently tethered to the capsid interior through swing arms. The crowded environment inside the VLPs induces colocalization of the enzymes and the immobilized NAD, which shuttles between the enzymes for in situ regeneration without diffusing into the bulk solution. The modularity of the nanoreactors allows to tune their composition and consequently their overall activity, and also remodel them for different reactions by altering enzyme partners. Given the plasticity and versatility, P22 VLPs possess great potential for developing functional materials capable of multistep biotransformations with advantageous properties, including enhanced efficiency and economical usage of enzyme cofactors.

Funder

National Science Foundation

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3