Lysine 2‐Hydroxyisobutyrylation‐ and Succinylation‐Based Pathways Act Inside Chloroplasts to Modulate Plant Photosynthesis and Immunity

Author:

Chen Bin1ORCID,Wang Zhicheng1,Jiao Mengjia1,Zhang Jin1,Liu Jie1,Zhang Dongmei1,Li Yanbin1,Wang Guoning1,Ke Huifeng1,Cui Qiuxia1,Yang Jun1,Sun Zhengwen1,Gu Qishen1,Wang Xingyi1,Wu Jinhua1,Wu Liqiang1,Zhang Guiyin1,Wang Xingfen1,Ma Zhiying1,Zhang Yan1ORCID

Affiliation:

1. State Key Laboratory of North China Crop Improvement and Regulation North China Key Laboratory for Germplasm Resources of Education Ministry Hebei Agricultural University Baoding 071001 China

Abstract

AbstractCrops must efficiently allocate their limited energy resources to survival, growth and reproduction, including balancing growth and defense. Thus, investigating the underlying molecular mechanism of crop under stress is crucial for breeding. Chloroplasts immunity is an important facet involving in plant resistance and growth, however, whether and how crop immunity modulated by chloroplast is influenced by epigenetic regulation remains unclear. Here, the cotton lysine 2‐hydroxyisobutyrylation (Khib) and succinylation (Ksuc) modifications are firstly identified and characterized, and discover that the chloroplast proteins are hit most. Both modifications are strongly associated with plant resistance to Verticillium dahliae, reflected by Khib specifically modulating PR and salicylic acid (SA) signal pathway and the identified GhHDA15 and GhSRT1 negatively regulating Verticillium wilt (VW) resistance via removing Khib and Ksuc. Further investigation uncovers that photosystem repair protein GhPSB27 situates in the core hub of both Khib‐ and Ksuc‐modified proteins network. The acylated GhPSB27 regulated by GhHDA15 and GhSRT1 can raise the D1 protein content, further enhancing plant biomass‐ and seed‐yield and disease resistance via increasing photosynthesis and by‐products of chloroplast‐derived reactive oxygen species (cROS). Therefore, this study reveals a mechanism balancing high disease resistance and high yield through epigenetic regulation of chloroplast protein, providing a novel strategy to crop improvements.

Funder

National Key Research and Development Program of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3