High‐Performance Stretchable Thermoelectric Generator for Self‐Powered Wearable Electronics

Author:

Fan Wusheng1ORCID,An Zijian2,Liu Feng1,Gao Ziheng1,Zhang Min1,Fu Chenguang13,Zhu Tiejun13,Liu Qingjun2,Zhao Xinbing1ORCID

Affiliation:

1. State Key Laboratory of Silicon Materials and School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China

2. Biosensor National Special Laboratory Key Laboratory for Biomedical Engineering of Education Ministry Department of Biomedical Engineering Zhejiang University Hangzhou 310027 China

3. Shanxi‐Zheda Institute of Advanced Materials and Chemical Engineering Taiyuan 030000 China

Abstract

AbstractWearable thermoelectric generators (TEGs), which can convert human body heat to electricity, provide a promising solution for self‐powered wearable electronics. However, their power densities still need to be improved aiming at broad practical applications. Here, a stretchable TEG that achieves comfortable wearability and outstanding output performance simultaneously is reported. When worn on the forehead at an ambient temperature of 15 °C, the stretchable TEG exhibits excellent power densities with a maximum value of 13.8 µW cm−2 under the breezeless condition, and even as high as 71.8 µW cm−2 at an air speed of 2 m s−1, being one of the highest values for wearable TEGs. Furthermore, this study demonstrates that this stretchable TEG can effectively power a commercial light‐emitting diode and stably drive an electrocardiogram module in real‐time without the assistance of any additional power supply. These results highlight the great potential of these stretchable TEGs for power generation applications.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3