OptiMo‐LDLr: An Integrated In Silico Model with Enhanced Predictive Power for LDL Receptor Variants, Unraveling Hot Spot Pathogenic Residues

Author:

Larrea‐Sebal Asier123,Sasiain Iñaki2,Jebari‐Benslaiman Shifa12,Galicia‐Garcia Unai12,Uribe Kepa B.2,Benito‐Vicente Asier12,Gracia‐Rubio Irene4,Bediaga‐Bañeres Harbil5,Arrasate Sonia6,Cenarro Ana4,Civeira Fernando4,González‐Díaz Humberto17,Martín Cesar12ORCID

Affiliation:

1. Biofisika Institute (UPV/EHU, CSIC) Barrio Sarriena s/n. Leioa Bizkaia 48940 Spain

2. Department of Biochemistry and Molecular Biology Universidad del País Vasco UPV/EHU Leioa Bizkaia 48940 Spain

3. Fundación Biofisika Bizkaia Barrio Sarriena s/n. Leioa Bizkaia 48940 Spain

4. Lipid Unit, Hospital Universitario Miguel Servet, IIS Aragon, CIBERCV Universidad de Zaragoza Zaragoza 50009 Spain

5. Department of Physical Chemistry University of Basque Country UPV/EHU Leioa 48940 Spain

6. Department of Organic and Chemistry University of the Basque Country UPV/EHU Leioa 48940 Spain

7. Ikerbasque, Basque Foundation for Science Bilbao Bizkaia 48013 Spain

Abstract

AbstractFamilial hypercholesterolemia (FH) is an inherited metabolic disease affecting cholesterol metabolism, with 90% of cases caused by mutations in the LDL receptor gene (LDLR), primarily missense mutations. This study aims to integrate six commonly used predictive software to create a new model for predicting LDLR mutation pathogenicity and mapping hot spot residues. Six predictive‐software are selected: Polyphen‐2, SIFT, MutationTaster, REVEL, VARITY, and MLb‐LDLr. Software accuracy is tested with the characterized variants annotated in ClinVar and, by bioinformatic and machine learning techniques all models are integrated into a more accurate one. The resulting optimized model presents a specificity of 96.71% and a sensitivity of 98.36%. Hot spot residues with high potential of pathogenicity appear across all domains except for the signal peptide and the O‐linked domain. In addition, translating this information into 3D structure of the LDLr highlights potentially pathogenic clusters within the different domains, which may be related to specific biological function. The results of this work provide a powerful tool to classify LDLR pathogenic variants. Moreover, an open‐access guide user interface (OptiMo‐LDLr) is provided to the scientific community. This study shows that combination of several predictive software results in a more accurate prediction to help clinicians in FH diagnosis.

Funder

Ministerio de Ciencia, Innovación y Universidades

Euskal Herriko Unibertsitatea

Hezkuntza, Hizkuntza Politika Eta Kultura Saila, Eusko Jaurlaritza

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3