A Bioinspired Immunostimulatory System for Inducing Powerful Antitumor Immune Function by Directly Causing Plasma Membrane Rupture

Author:

Hu Xiaoqu12,Yin Hao3,Xie Danli3,Chen Tanzhou2,Li Yida1,Zeng Hanqian2,Lu Mingdong1,Wang Qinyang13ORCID

Affiliation:

1. Department of Radiation and Medical Oncology Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation Oncology Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University Wenzhou Zhejiang 325027 P. R. China

2. The First Affiliated Hospital of Wenzhou Medical University Wenzhou Medical University Wenzhou Zhejiang 325027 P. R. China

3. Institute for Advanced Research Wenzhou Medical University Wenzhou Zhejiang 325027 P. R. China

Abstract

AbstractThe Gasdermin protein is a membrane disruptor that can mediate immunogenic pyroptosis and elicit anti‐tumor immune function. However, cancer cells downregulate Gasdermin and develop membrane repair mechanisms to resist pyroptosis. Therefore, an artificial membrane disruptor (AMD) that can directly mediate membrane rupture in pyroptosis‐deficient cells and induce antitumor immune responses in a controllable manner will be valuable in preclinical and clinical research. A micron‐scale Ce6‐based AMD that can directly induce plasma membrane rupture (PMR) in gasdermin‐deficient tumor cells is established. Micron‐scale AMDs localize Ce6 specifically to the plasma membrane without labeling other organelles. Compared to free Ce6 molecules, the use of AMDs results in a higher degree of specificity for the plasma membrane. Due to this specificity, AMDs mediate fast and irreversible PMR under 660 nm red light. Furthermore, the AMDs are capable of inducing programmed cell death and lytic cell death in a catalytic manner, demonstrating that the amount of Ce6 used by AMDs is only one‐fifth of that used by Ce6 alone when inducing 80% of cancer cell death. In vivo, the AMDs show specificity for tumor targeting and penetration, suggesting that light‐driven programmed cell death is specific to tumors. AMDs are applied to antitumor therapy in gasdermin‐deficient tumors, resulting in efficient tumor elimination with minimal damage to major organs when combined with anti‐PD‐1 therapy. Tumor regression is correlated with PMR‐mediated inflammation and T‐cell‐based immune responses. This study provides new insights for designing bioinspired membrane disruptors for PMR and mediating anti‐tumor immunotherapy. Additionally, AMD is a dependable tool for examining the immunogenicity of PMR both in vitro and in vivo.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3