Affiliation:
1. Institute of Marine Science and Technology Shandong University Qingdao 266237 China
2. Department of Periodontology School and Hospital of Stomatology Cheeloo College of Medicine Shandong University Jinan 250100 China
3. State Key Laboratory of Crystal Materials Shandong University Jinan 250100 China
4. Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application Jinan 250100 China
Abstract
AbstractSingle‐cell multiomic and exosome analyses are potent tools in various fields, such as cancer research, immunology, neuroscience, microbiology, and drug development. They facilitate the in‐depth exploration of biological systems, providing insights into disease mechanisms and aiding in treatment. Single‐cell isolation, which is crucial for single‐cell analysis, ensures reliable cell isolation and quality control for further downstream analyses. Microfluidic chips are small lightweight systems that facilitate efficient and high‐throughput single‐cell isolation and real‐time single‐cell analysis on‐ or off‐chip. Therefore, most current single‐cell isolation and analysis technologies are based on the single‐cell microfluidic technology. This review offers comprehensive guidance to researchers across different fields on the selection of appropriate microfluidic chip technologies for single‐cell isolation and analysis. This review describes the design principles, separation mechanisms, chip characteristics, and cellular effects of various microfluidic chips available for single‐cell isolation. Moreover, this review highlights the implications of using this technology for subsequent analyses, including single‐cell multiomic and exosome analyses. Finally, the current challenges and future prospects of microfluidic chip technology are outlined for multiplex single‐cell isolation and multiomic and exosome analyses.
Funder
National Natural Science Foundation of China
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献