Affiliation:
1. Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
2. School of Chemistry and Chemical Engineering Chongqing Key Laboratory of Theoretical and Computational Chemistry Chongqing University Chongqing 401331 China
3. Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
4. Institute for Convergence Research and Education in Advanced Technology (I–CREATE) Yonsei University Seoul 03722 Republic of Korea
Abstract
AbstractAtomically precise metal nanoclusters (NCs) have emerged as a promising frontier in the field of electrochemical CO2 reduction reactions (CO2RR) because of their distinctive catalytic properties. Although numerous metal NCs are developed for CO2RR, their use in practical applications has suffered from their low‐yield synthesis and insufficient catalytic activity. In this study, the large‐scale synthesis and electrocatalytic performance of ClAg14(C≡CtBu)12+ NCs, which exhibit remarkable efficiency in catalyzing CO2‐to‐CO electroreduction with a CO selectivity of over 99% are reported. The underlying mechanisms behind this extraordinary CO2RR activity of ClAg14(C≡CtBu)12+ NCs are investigated by a combination of electrokinetic and theoretical studies. These analyses reveal that different active sites, generated through electrochemical activation, have unique adsorption properties for the reaction intermediates, leading to enhanced CO2RR and suppressed hydrogen production. Furthermore, industrially relevant CO2‐to‐CO electroreduction using ClAg14(C≡CtBu)12+ NCs in a zero‐gap CO2 electrolyzer, achieving high energy efficiency of 51% and catalyst activity of over 1400 A g−1 at a current density of 400 mA cm−2 is demonstrated.
Funder
National Research Foundation of Korea
National Natural Science Foundation of China
Subject
General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献