A Novel Bioswitchable miRNA Mimic Delivery System: Therapeutic Strategies Upgraded from Tetrahedral Framework Nucleic Acid System for Fibrotic Disease Treatment and Pyroptosis Pathway Inhibition

Author:

Jiang Yueying1,Li Songhang1,Shi Ruijianghan1,Yin Wumeng1,Lv Weitong1,Tian Taoran1,Lin Yunfeng12ORCID

Affiliation:

1. State Key Laboratory of Oral Diseases National Center for Stomatology National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 China

2. Sichuan Provincial Engineering Research Center of Oral Biomaterials Sichuan University Chengdu Sichuan 610041 China

Abstract

AbstractThere has been considerable interest in gene vectors and their role in regulating cellular activities and treating diseases since the advent of nucleic acid drugs. MicroRNA (miR) therapeutic strategies are research hotspots as they regulate gene expression post‐transcriptionally and treat a range of diseases. An original tetrahedral framework nucleic acid (tFNA) analog, a bioswitchable miR inhibitor delivery system (BiRDS) carrying miR inhibitors, is previously established; however, it remains unknown whether BiRDS can be equipped with miR mimics. Taking advantage of the transport capacity of tetrahedral framework nucleic acid (tFNA) and upgrading it further, the treatment outcomes of a traditional tFNA and BiRDS at different concentrations on TGF‐β‐ and bleomycin‐induced fibrosis simultaneously in vitro and in vivo are compared. An upgraded traditional tFNA is designed by successfully synthesizing a novel BiRDS, carrying a miR mimic, miR‐27a, for treating skin fibrosis and inhibiting the pyroptosis pathway, which exhibits stability and biocompatibility. BiRDS has three times higher efficiency in delivering miRNAs than the conventional tFNA with sticky ends. Moreover, BiRDS is more potent against fibrosis and pyroptosis‐related diseases than tFNAs. These findings indicate that the BiRDS can be applied as a drug delivery system for disease treatment.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Sichuan Province Youth Science and Technology Innovation Team

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3