Genuine Dirac Half‐Metals in Two‐Dimensions

Author:

Gong Jialin12,Ding Guangqian3,Xie Chengwu4,Wang Wenhong4,Liu Ying5,Zhang Gang6,Wang Xiaotian12

Affiliation:

1. Institute for Superconducting and Electronic Materials (ISEM) University of Wollongong Wollongong 2500 Australia

2. School of Physical Science and Technology Southwest University Chongqing 400715 China

3. School of Science Chongqing University of Posts and Telecommunications Chongqing 400065 China

4. School of Electronics and Information Engineering Tiangong University Tianjin 300387 China

5. School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 China

6. Institute of High Performance Computing Agency for Science Technology and Research (A*STAR) Singapore 138632 Singapore

Abstract

AbstractWhen spin‐orbit coupling (SOC) is absent, all proposed half‐metals with twofold degenerate nodal points at the K (or K′) point in 2D materials are classified as “Dirac half‐metals” owing to the way graphene is utilized in the earliest studies. Actually, each band crossing point at the K or K′ point is described by a 2D Weyl Hamiltonian with definite chirality; hence, it should be a Weyl point. To the best of its knowledge, there have not yet been any reports of a genuine (i.e., fourfold degenerate) 2D Dirac point half‐metal. In this work, using first‐principles calculations, it proposes for the first time that the 2D d0‐type ferromagnet Mg4N4 is a genuine 2D Dirac half‐metal candidate with a fourfold degenerate Dirac point at the S high‐symmetry point, intrinsic magnetism, a high Curie temperature, 100% spin polarization, topology robust under the SOC and uniaxial and biaxial strains, and spin‐polarized edge states. This work can serve as a starting point for future predictions of intrinsically magnetic materials with genuine 2D Dirac points, which will aid the frontier of topo‐spintronics research in 2D systems.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3