Spatiotemporally Precise Optical Manipulation of Intracellular Molecular Activities

Author:

Dong Bin1,Mahapatra Shivam1,Clark Matthew G.1,Carlsen Mark S.1,Mohn Karsten J.1,Ma Seohee1,Brasseale Kent A.1,Crim Grace1,Zhang Chi123ORCID

Affiliation:

1. Department of Chemistry Purdue University 560 Oval Dr. West Lafayette IN 47907 USA

2. Purdue Center for Cancer Research 201 S. University St. West Lafayette IN 47907 USA

3. Purdue Institute of Inflammation, Immunology, and Infectious Disease 207 S. Martin Jischke Dr. West Lafayette IN 47907 USA

Abstract

AbstractControlling chemical processes in live cells is a challenging task. The spatial heterogeneity of biochemical reactions in cells is often overlooked by conventional means of incubating cells with desired chemicals. A comprehensive understanding of spatially diverse biochemical processes requires precise control over molecular activities at the subcellular level. Herein, a closed‐loop optoelectronic control system is developed that allows the manipulation of biomolecular activities in live cells at high spatiotemporal precision. Chemical‐selective fluorescence signals are utilized to command lasers that trigger specific chemical processes or control the activation of photoswitchable inhibitors at desired targets. This technology is fully compatible with laser scanning confocal fluorescence microscopes. The authors demonstrate selective interactions of a 405 nm laser with targeted organelles and simultaneous monitoring of cell responses by fluorescent protein signals. Notably, blue laser interaction with the endoplasmic reticulum leads to a more pronounced reduction in cytosolic green fluorescent protein signals in comparison to that with nuclei and lipid droplets. Moreover, when combined with a photoswitchable inhibitor, microtubule polymerization is selectively inhibited within the subcellular compartments. This technology enables subcellular spatiotemporal optical manipulation over chemical processes and drug activities, exclusively at desired targets, while minimizing undesired effects on non‐targeted locations.

Funder

National Institutes of Health

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3