Affiliation:
1. Center for Nano Science and Technology Istituto Italiano di Tecnologia Milano 20133 Italy
2. Humanitas Cardio Center IRCCS Humanitas Research Hospital Via Manzoni 56 Rozzano Milan 20089 Italy
3. Politecnico di Milano Physics Dept. P.zza L. Da Vinci 32 Milano 20133 Italy
4. Department of Chemistry, University of Bologna ‘‘Giacomo Ciamician,’’ via Francesco Selmi 2 Bologna 40126 Italy
5. Institute of Genetic and Biomedical Research (IRGB) UOS of Milan—National Research Council of Italy (CNR) Milan 20138 Italy
Abstract
AbstractOptical stimulation in the red/near infrared range recently gained increasing interest, as a not‐invasive tool to control cardiac cell activity and repair in disease conditions. Translation of this approach to therapy is hampered by scarce efficacy and selectivity. The use of smart biocompatible materials, capable to act as local, NIR‐sensitive interfaces with cardiac cells, may represent a valuable solution, capable to overcome these limitations. In this work, a far red‐responsive conjugated polymer, namely poly[2,1,3‐benzothiadiazole‐4,7‐diyl[4,4‐bis(2‐ethylhexyl)−4H‐cyclopenta[2,1‐b:3,4‐b’]dithiophene‐2,6‐diyl]] (PCPDTBT) is proposed for the realization of photoactive interfaces with cardiomyocytes derived from pluripotent stem cells (hPSC‐CMs). Optical excitation of the polymer turns into effective ionic and electrical modulation of hPSC‐CMs, in particular by fastening Ca2+ dynamics, inducing action potential shortening, accelerating the spontaneous beating frequency. The involvement in the phototransduction pathway of Sarco‐Endoplasmic Reticulum Calcium ATPase (SERCA) and Na+/Ca2+ exchanger (NCX) is proven by pharmacological assays and is correlated with physical/chemical processes occurring at the polymer surface upon photoexcitation. Very interestingly, an antiarrhythmogenic effect, unequivocally triggered by polymer photoexcitation, is also observed. Overall, red‐light excitation of conjugated polymers may represent an unprecedented opportunity for fine control of hPSC‐CMs functionality and can be considered as a perspective, noninvasive approach to treat arrhythmias.
Funder
Horizon 2020 Framework Programme
Subject
General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献