Nongenetic Optical Modulation of Pluripotent Stem Cells Derived Cardiomyocytes Function in the Red Spectral Range

Author:

Ronchi Carlotta1,Galli Camilla2,Tullii Gabriele1,Marzuoli Camilla13,Mazzola Marta2,Malferrari Marco4,Crasto Silvia2,Rapino Stefania4,Di Pasquale Elisa25,Antognazza Maria Rosa1ORCID

Affiliation:

1. Center for Nano Science and Technology Istituto Italiano di Tecnologia Milano 20133 Italy

2. Humanitas Cardio Center IRCCS Humanitas Research Hospital Via Manzoni 56 Rozzano Milan 20089 Italy

3. Politecnico di Milano Physics Dept. P.zza L. Da Vinci 32 Milano 20133 Italy

4. Department of Chemistry, University of Bologna ‘‘Giacomo Ciamician,’’ via Francesco Selmi 2 Bologna 40126 Italy

5. Institute of Genetic and Biomedical Research (IRGB) UOS of Milan—National Research Council of Italy (CNR) Milan 20138 Italy

Abstract

AbstractOptical stimulation in the red/near infrared range recently gained increasing interest, as a not‐invasive tool to control cardiac cell activity and repair in disease conditions. Translation of this approach to therapy is hampered by scarce efficacy and selectivity. The use of smart biocompatible materials, capable to act as local, NIR‐sensitive interfaces with cardiac cells, may represent a valuable solution, capable to overcome these limitations. In this work, a far red‐responsive conjugated polymer, namely poly[2,1,3‐benzothiadiazole‐4,7‐diyl[4,4‐bis(2‐ethylhexyl)−4H‐cyclopenta[2,1‐b:3,4‐b’]dithiophene‐2,6‐diyl]] (PCPDTBT) is proposed for the realization of photoactive interfaces with cardiomyocytes derived from pluripotent stem cells (hPSC‐CMs). Optical excitation of the polymer turns into effective ionic and electrical modulation of hPSC‐CMs, in particular by fastening Ca2+ dynamics, inducing action potential shortening, accelerating the spontaneous beating frequency. The involvement in the phototransduction pathway of Sarco‐Endoplasmic Reticulum Calcium ATPase (SERCA) and Na+/Ca2+ exchanger (NCX) is proven by pharmacological assays and is correlated with physical/chemical processes occurring at the polymer surface upon photoexcitation. Very interestingly, an antiarrhythmogenic effect, unequivocally triggered by polymer photoexcitation, is also observed. Overall, red‐light excitation of conjugated polymers may represent an unprecedented opportunity for fine control of hPSC‐CMs functionality and can be considered as a perspective, noninvasive approach to treat arrhythmias.

Funder

Horizon 2020 Framework Programme

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3