Perovskite BaTaO2N: From Materials Synthesis to Solar Water Splitting

Author:

Hojamberdiev Mirabbos1ORCID,Vargas Ronald23ORCID,Zhang Fuxiang4ORCID,Teshima Katsuya56ORCID,Lerch Martin1ORCID

Affiliation:

1. Institut für Chemie Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Germany

2. Instituto Tecnológico de Chascomús (INTECH) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Universidad Nacional de San Martín (UNSAM) Avenida Intendente Marino, Km 8,2, (B7130IWA) Chascomús Provincia de Buenos Aires Argentina

3. Escuela de Bio y Nanotecnologías Universidad Nacional de San Martín (UNSAM) Avenida Intendente Marino, Km 8,2, (B7130IWA) Chascomús Provincia de Buenos Aires Argentina

4. State Key Laboratory of Catalysis iChEM Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian National Laboratory for Clean Energy Dalian 116023 P.R. China

5. Department of Materials Chemistry Shinshu University 4‐17‐1 Wakasato Nagano 3808553 Japan

6. Research Initiative for Supra‐Materials Shinshu University 4‐17‐1 Wakasato Nagano 3808553 Japan

Abstract

AbstractBarium tantalum oxynitride (BaTaO2N), as a member of an emerging class of perovskite oxynitrides, is regarded as a promising inorganic material for solar water splitting because of its small band gap, visible light absorption, and suitable band edge potentials for overall water splitting in the absence of an external bias. However, BaTaO2N still exhibits poor water‐splitting performance that is susceptible to its synthetic history, surface states, recombination process, and instability. This review provides a comprehensive summary of previous progress, current advances, existing challenges, and future perspectives of BaTaO2N for solar water splitting. A particular emphasis is given to highlighting the principles of photoelectrochemical (PEC) water splitting, classic and emerging photocatalysts for oxygen evolution reactions, and the crystal and electronic structures, dielectric, ferroelectric, and piezoelectric properties, synthesis routes, and thin‐film fabrication of BaTaO2N. Various strategies to achieve enhanced water‐splitting performance of BaTaO2N, such as reducing the surface and bulk defect density, engineering the crystal facets, tailoring the particle morphology, size, and porosity, cation doping, creating the solid solutions, forming the heterostructures and heterojunctions, designing the photoelectrochemical cells, and loading suitable cocatalysts are discussed. Also, the avenues for further investigation and the prospects of using BaTaO2N in solar water splitting are presented.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Reference217 articles.

1. Hydrogen Storage. Hydrogen and Fuel Cell Technologies Office U.S. Department of Energy. https://www.energy.gov/eere/fuelcells/hydrogen‐storage(accessed on June 5 2023).

2. The Paris Agreement United Nations https://unfccc.int/process‐and‐meetings/the‐paris‐agreement/the‐paris‐agreement(accessed on June 5 2023).

3. Global Hydrogen Review 2021 International Energy Agency https://iea.blob.core.windows.net/assets/e57fd1ee‐aac7‐494d‐a351‐f2a4024909b4/GlobalHydrogenReview2021.pdf(accessed on June 5 2023).

4. Photoelectrochemistry: Applications to Solar Energy Conversion

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3