Direct and Inverse Spin Splitting Effects in Altermagnetic RuO2

Author:

Guo Yaqin1,Zhang Jing1,Zhu Zengtai1,Jiang Yuan‐yuan23,Jiang Longxing1,Wu Chuangwen1,Dong Jing1,Xu Xing1,He Wenqing4,He Bin4,Huang Zhiheng4,Du Luojun14,Zhang Guangyu14,Wu Kehui14,Han Xiufeng14,Shao Ding‐fu23,Yu Guoqiang14,Wu Hao14ORCID

Affiliation:

1. Songshan Lake Materials Laboratory Dongguan Guangdong 523808 China

2. Key Laboratory of Materials Physics Institute of Solid State Physics HFIPS Chinese Academy of Sciences Hefei 230031 China

3. University of Science and Technology of China Hefei 230026 China

4. Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China

Abstract

AbstractRecently, the altermagnetic materials with spin splitting effect (SSE), have drawn significant attention due to their potential to the flexible control of the spin polarization by the Néel vector. Here, the direct and inverse altermagnetic SSE (ASSE) in the (101)‐oriented RuO2 film with the tilted Néel vector are reported. First, the spin torque along the x‐, y‐, and z‐axis is detected from the spin torque‐induced ferromagnetic resonance (ST‐FMR), and the z‐spin torque emerges when the electric current is along the [010] direction, showing the anisotropic spin splitting of RuO2. Further, the current‐induced modulation of damping is used to quantify the damping‐like torque efficiency (ξDL) in RuO2/Py, and an anisotropic ξDL is obtained and maximized for the current along the [010] direction, which increases with the reduction of the temperature, indicating the present of ASSE. Next, by way of spin pumping measurement, the inverse altermagnetic spin splitting effect (IASSE) is studied, which also shows a crystal direction‐dependent anisotropic behavior and temperature‐dependent behavior. This work gives a comprehensive study of the direct and inverse ASSE effects in the altermagnetic RuO2, inspiring future altermagnetic materials and devices with flexible control of spin polarization.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Songshan Lake Materials Laboratory

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3