Affiliation:
1. Songshan Lake Materials Laboratory Dongguan Guangdong 523808 China
2. Key Laboratory of Materials Physics Institute of Solid State Physics HFIPS Chinese Academy of Sciences Hefei 230031 China
3. University of Science and Technology of China Hefei 230026 China
4. Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China
Abstract
AbstractRecently, the altermagnetic materials with spin splitting effect (SSE), have drawn significant attention due to their potential to the flexible control of the spin polarization by the Néel vector. Here, the direct and inverse altermagnetic SSE (ASSE) in the (101)‐oriented RuO2 film with the tilted Néel vector are reported. First, the spin torque along the x‐, y‐, and z‐axis is detected from the spin torque‐induced ferromagnetic resonance (ST‐FMR), and the z‐spin torque emerges when the electric current is along the [010] direction, showing the anisotropic spin splitting of RuO2. Further, the current‐induced modulation of damping is used to quantify the damping‐like torque efficiency (ξDL) in RuO2/Py, and an anisotropic ξDL is obtained and maximized for the current along the [010] direction, which increases with the reduction of the temperature, indicating the present of ASSE. Next, by way of spin pumping measurement, the inverse altermagnetic spin splitting effect (IASSE) is studied, which also shows a crystal direction‐dependent anisotropic behavior and temperature‐dependent behavior. This work gives a comprehensive study of the direct and inverse ASSE effects in the altermagnetic RuO2, inspiring future altermagnetic materials and devices with flexible control of spin polarization.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Songshan Lake Materials Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献