Affiliation:
1. Technical Institute of Physics and Chemistry Chinese Academy of Sciences Zhongguancun East Road, Haidian District Beijing 100190 China
2. University of Chinese Academy of Sciences Zhongguancun East Road, Haidian District Beijing 100049 China
Abstract
AbstractThe rational design of visible‐light‐responsive catalysts is crucial for converting solar energy into hydrogen energy to promote sustainable energy development. In this work, a C─S─C bond is introduced into g‐C3N4 (CN) through S doping. With the help of the flexible C─S─C bond under specific stimuli, a hollow coral‐like porous structure of S‐doped g‐C3N4 (S‐CN) is synthesized for the first time. And an S‐doped g‐C3N4/ZnIn2S4 (S‐CN/ZIS) heterojunction catalyst is in situ synthesized based on S‐CN. S0.5‐CN/ZIS exhibits excellent photocatalytic hydrogen evolution (PHE) efficiency (19.25 mmol g−1 h−1), which is 2.7 times higher than that of the g‐C3N4/ZnIn2S4 (CN/ZIS) catalyst (8.46 mmol g−1 h−1), with a high surface quantum efficiency (AQE) of 34.43% at 420 nm. Experiments and theoretical calculations demonstrate that the excellent photocatalytic performance is attributed to the larger specific surface area and porosity, enhanced interfacial electric field (IEF) effect, and appropriate hydrogen adsorption Gibbs free energy (ΔGH*). The synergistic effect of S doping and S‐scheme heterojunction contributes to the above advancement. This study provides new insights and theoretical basis for the design of CN‐based photocatalysts.
Funder
Chinese Academy of Sciences