Voxel Design of Grayscale DLP 3D‐Printed Soft Robots

Author:

Zhang Mengjie12,Fan Xiru12,Dong Le12,Jiang Chengru12,Weeger Oliver3,Zhou Kun4,Wang Dong12ORCID

Affiliation:

1. State Key Laboratory of Mechanical System and Vibration School of Mechanical Engineering Shanghai Jiao Tong University Shanghai 200240 China

2. Meta Robotics Institute Shanghai Jiao Tong University Shanghai 200240 China

3. Cyber‐Physical Simulation Group & Additive Manufacturing Center Department of Mechanical Engineering Technical University of Darmstadt Dolivostr. 15, Darmstadt 64293 Hessen Germany

4. Singapore Centre for 3D Printing School of Mechanical and Aerospace Engineering Nanyang Technological University Singapore 639798 Singapore

Abstract

AbstractGrayscale digital light processing (DLP) printing is a simple yet effective way to realize the variation of material properties by tuning the grayscale value. However, there is a lack of available design methods for grayscale DLP 3D‐printed structures due to the complexities arising from the voxel‐level grayscale distribution, nonlinear material properties, and intricate structures. Inspired by the dexterous motions of natural organisms, a design and fabrication framework for grayscale DLP‐printed soft robots is developed by combining a grayscale‐dependent hyperelastic constitutive model and a voxel‐based finite‐element model. The constitutive model establishes the relationship between the projected grayscale value and the nonlinear mechanical properties, while the voxel‐based finite‐element model enables fast and efficient calculation of the mechanical performances with arbitrarily distributed material properties. A multiphysics modeling and experimental method is developed to validate the homogenization assumption of the degree of conversion (DoC) variation in a single voxel. The design framework is used to design structures with reduced stress concentration and programmable multimodal motions. This work paves the way for integrated design and fabrication of functional structures using grayscale DLP 3D printing.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3