Biomimetic Anticoagulated Porous Particles with Self‐Reporting Structural Colors

Author:

Chen Hanxu1ORCID,Bian Feika1,Luo Zhiqiang1,Zhao Yuanjin123ORCID

Affiliation:

1. Department of Rheumatology and Immunology Nanjing Drum Tower Hospital School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China

2. Shenzhen Research Institute Southeast University Shenzhen 518038 China

3. Chemistry and Biomedicine Innovation Center Nanjing University Nanjing 210023 China

Abstract

AbstractAnticoagulation is vital to maintain blood fluidic status and physiological functions in the field of clinical blood‐related procedures. Here, novel biomimetic anticoagulated porous inverse opal hydrogel particles is presented as anticoagulant bearing dynamic screening capability. The inverse opal hydrogel particles possess abundant sulfonic and carboxyl groups, which serve as binding sites with multiple coagulation factors and inhibit the blood coagulation process. Owing to the variations of refractive index and pore sizes during the binding process, the particles appeared corresponding structure color variations, which can be adopted as sensory index of anticoagulation. Based on these features, a sensor containing these diverse structure color particle units is constructed for pattern recognition of coagulation factors level in clinical plasma samples. By analyzing the sensory information of the unit, the colorimetric “fingerprint” for each target can be obtained and summarized as a database. Besides, a portable test‐strip integrating sensory units is developed to distinguish the sample regarding abnormal coagulation factors‐derived diseases via multivariate data analysis. It is believed that such biomimetic anticoagulated structural color particles and their derived sensor will open new avenue for clinical detection and disease diagnosis.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Nanjing Medical Science and Technique Development Foundation

Shenzhen Fundamental Research Program

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3