Affiliation:
1. Institute for Health Innovation and Technology (iHealthtech) National University of Singapore Singapore 117599 Singapore
2. Department of Biomedical Engineering National University of Singapore Singapore 117583 Singapore
3. Mechanobiology Institute National University of Singapore Singapore 117411 Singapore
Abstract
AbstractWhile the human gut microbiota has a significant impact on gut health and disease, understanding of the roles of gut microbes, interactions, and collective impact of gut microbes on various aspects of human gut health is limited by the lack of suitable in vitro model system that can accurately replicate gut‐like environment and enable the close visualization on causal and mechanistic relationships between microbial constitutents and the gut. , In this study, we present a scalable Gut Microbiome‐on‐a‐Chip (GMoC) with great imaging capability and scalability, providing a physiologically relevant dynamic gut‐microbes interfaces. This chip features a reproducible 3D stratified gut epithelium derived from Caco‐2 cells (µGut), mimicking key intestinal architecture, functions, and cellular complexity, providing a physiolocially relevant gut environment for microbes residing in the gut. Incorporating tumorigenic bacteria, enterotoxigenic Bacteroides fragilis (ETBF), into the GMoC enable the observation of pathogenic behaviors of ETBF, leading to µGut disruption and pro‐tumorigenic signaling activations. Pre‐treating the µGut with a beneficial gut microbe Lactobacillus spp., effectively prevent ETBF‐mediated gut pathogenesis, preserving the healthy state of the µGut through competition‐mediated colonization resistance. The GMoC holds potential as a valuable tool for exploring unknown roles of gut microbes in microbe‐induced pathogenesis and microbe‐based therapeutic development.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献