In Situ Electropolymerizing Toward EP‐CoP/Cu Tandem Catalyst for Enhanced Electrochemical CO2‐to‐Ethylene Conversion

Author:

Wang Chao1,Sun Yifan2,Chen Yuzhuo3,Zhang Yiting1,Yue Liangliang3,Han Lianhuan1,Zhao Liubin2,Zhu Xunjin3ORCID,Zhan Dongping1

Affiliation:

1. Pen‐Tung Sah Institute of Micro‐Nano Science and Technology State Key Laboratory of Physical Chemistry of Solid Surfaces Fujian Science & Technology Innovation Laboratory for Energy Materials of China Engineering Research Center of Electrochemical Technologies of Ministry of Education Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China

2. Department of Chemistry School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China

3. Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis Hong Kong Baptist University Kowloon Tong Hong Kong China

Abstract

AbstractElectrochemical CO2 reduction has garnered significant interest in the conversion of sustainable energy to valuable fuels and chemicals. Cu‐based bimetallic catalysts play a crucial role in enhancing *CO concentration on Cu sites for efficient C─C coupling reactions, particularly for C2 product generation. To enhance Cu's electronic structure and direct its selectivity toward C2 products, a novel strategy is proposed involving the in situ electropolymerization of a nano‐thickness cobalt porphyrin polymeric network (EP‐CoP) onto a copper electrode, resulting in the creation of a highly effective EP‐CoP/Cu tandem catalyst. The even distribution of EP‐CoP facilitates the initial reduction of CO2 to *CO intermediates, which then transition to Cu sites for efficient C─C coupling. DFT calculations confirm that the *CO enrichment from Co sites boosts *CO coverage on Cu sites, promoting C─C coupling for C2+ product formation. The EP‐CoP/Cu gas diffusion electrode achieves an impressive current density of 726 mA cm−2 at −0.9 V versus reversible hydrogen electrode (RHE), with a 76.8% Faraday efficiency for total C2+ conversion and 43% for ethylene, demonstrating exceptional long‐term stability in flow cells. These findings mark a significant step forward in developing a tandem catalyst system for the effective electrochemical production of ethylene.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3