Axial Oxygen Ligands Regulating Electronic and Geometric Structure of Zn‐N‐C Sites to Boost Oxygen Reduction Reaction

Author:

Jin Qiuyan12,Wang Chenhui12,Guo Yingying12,Xiao Yuhang12,Tan Xiaohong12,Chen Jianpo12,He Weidong12,Li Yan12ORCID,Cui Hao12,Wang Chengxin12

Affiliation:

1. School of Materials Science and Engineering Sun Yat‐sen University Guangzhou 510275 China

2. The Key Laboratory of Low‐Carbon Chemistry & Energy Conservation of Guangdong Province Sun Yat‐sen University Guangzhou 510275 China

Abstract

AbstractZn‐N‐C possesses the intrinsic inertia for Fenton‐like reaction and can retain robust durability in harsh circumstance, but it is often neglected in oxygen reduction reaction (ORR) because of its poor catalytic activity. Zn is of fully filled 3d104s2 configuration and is prone to evaporation, making it difficult to regulate the electronic and geometric structure of Zn center. Here, guided by theoretical calculations, five‐fold coordinated single‐atom Zn sites with four in‐plane N ligands is constructed and one axial O ligand (Zn‐N4‐O) by ionic liquid‐assisted molten salt template method. Additional axial O not only triggers a geometry transformation from the planar structure of Zn‐N4 to the non‐planar structure of Zn‐N4‐O, but also induces the electron transfer from Zn center to neighboring atoms and lower the d‐band center of Zn atom, which weakens the adsorption strength of *OH and decreases the energy barrier of rate determining step of ORR. Consequently, the Zn‐N4‐O sites exhibit improved ORR activity and excellent methanol tolerance with long‐term durability. The Zn‐air battery assembled by Zn‐N4‐O presents a maximum power density of 182 mW cm−2 and can operate continuously for over 160 h. This work provides new insights into the design of Zn‐based single atom catalysts through axial coordination engineering.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Hebei Provincial Key Research Projects

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3