Affiliation:
1. Department of Materials Science and Engineering Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials Southern University of Science and Technology Shenzhen 518055 China
2. Guangdong Provincial Key Laboratory of Computational Science and Material Design Southern University of Science and Technology Shenzhen 518055 China
Abstract
AbstractAlthough hard carbon (HC) demonstrates superior initial Coulombic efficiency, cycling durability, and rate capability in ether‐based electrolytes compared to ester‐based electrolytes for sodium‐ion batteries (SIBs), the underlying mechanisms responsible for these disparities remain largely unexplored. Herein, ex situ electron paramagnetic resonance (EPR) spectra and in situ Raman spectroscopy are combined to investigate the Na storage mechanism of HC under different electrolytes. Through deconvolving the EPR signals of Na in HC, quasi‐metallic‐Na is successfully differentiated from adsorbed‐Na. By monitoring the evolution of different Na species during the charging/discharging process, it is found that the initial adsorbed‐Na in HC with ether‐based electrolytes can be effectively transformed into intercalated‐Na in the plateau region. However, this transformation is obstructed in ester‐based electrolytes, leading to the predominant storage of Na in HC as adsorbed‐Na and pore‐filled‐Na. Furthermore, the intercalated‐Na in HC within the ether‐based electrolytes contributes to the formation of a uniform, dense, and stable solid–electrolyte interphase (SEI) film and eventually enhances the electrochemical performance of HC. This work successfully deciphers the electrolyte‐dominated Na+ storage mechanisms in HC and provides fundamental insights into the industrialization of HC in SIBs.
Funder
National Natural Science Foundation of China
Subject
General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献