Self‐Assembly of Organic Semiconductors on Strained Graphene under Strain‐Induced Pseudo‐Electric Fields

Author:

Hwang Jinhyun1,Park Jisang1,Choi Jinhyeok1,Lee Taeksang2,Lee Hyo Chan3,Cho Kilwon1ORCID

Affiliation:

1. Department of Chemical Engineering Pohang University of Science and Technology Pohang 37673 Republic of Korea

2. Department of Mechanical Engineering Myongji University Yongin 17058 Republic of Korea

3. Department of Chemical Engineering Myongji University Yongin 17058 Republic of Korea

Abstract

AbstractGraphene is used as a growth template for van der Waals epitaxy of organic semiconductor (OSC) thin films. During the synthesis and transfer of chemical‐vapor‐deposited graphene on a target substrate, local inhomogeneities in the graphene—in particular, a nonuniform strain field in the graphene template—can easily form, causing poor morphology and crystallinity of the OSC thin films. Moreover, a strain field in graphene introduces a pseudo‐electric field in the graphene. Here, the study investigates how the strain and strain‐induced pseudo‐electric field of a graphene template affect the self‐assembly of π‐conjugated organic molecules on it. Periodically strained graphene templates are fabricated by transferring graphene onto an array of nanospheres and then analyzed the growth and nucleation behavior of C60 thin films on the strained graphene templates. Both experiments and a numerical simulation demonstrated that strained graphene reduced the desorption energy between the graphene and the C60 molecules and thereby suppressed both nucleation and growth of the C60. A mechanism is proposed in which the strain‐induced pseudo‐electric field in graphene modulates the binding energy of organic molecules on the graphene.

Funder

National Research Foundation of Korea

Ministry of Science and ICT, South Korea

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3