Near‐Infrared Light‐Induced Reversible Deactivation Radical Polymerization: Expanding Frontiers in Photopolymerization

Author:

Wu Zilong1,Boyer Cyrille1ORCID

Affiliation:

1. Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia

Abstract

AbstractPhotoinduced reversible deactivation radical polymerization (photo‐RDRP) or photoinduced controlled/living radical polymerization has emerged as a versatile and powerful technique for preparing functional and advanced polymer materials under mild conditions by harnessing light energy. While UV and visible light (λ = 400–700 nm) are extensively employed in photo‐RDRP, the utilization of near‐infrared (NIR) wavelengths (λ = 700–2500 nm) beyond the visible region remains relatively unexplored. NIR light possesses unique properties, including enhanced light penetration, reduced light scattering, and low biomolecule absorption, thereby providing opportunities for applying photo‐RDRP in the fields of manufacturing and medicine. This comprehensive review categorizes all known NIR light‐induced RDRP (NIR‐RDRP) systems into four mechanism‐based types: mediation by upconversion nanoparticles, mediation by photocatalysts, photothermal conversion, and two‐photon absorption. The distinct photoinitiation pathways associated with each mechanism are discussed. Furthermore, this review highlights the diverse applications of NIR‐RDRP reported to date, including 3D printing, polymer brush fabrication, drug delivery, nanoparticle synthesis, and hydrogel formation. By presenting these applications, the review underscores the exceptional capabilities of NIR‐RDRP and offers guidance for developing high‐performance and versatile photopolymerization systems. Exploiting the unique properties of NIR light unlocks new opportunities for synthesizing functional and advanced polymer materials.

Funder

Australian Research Council

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3