Self‐Powered Biomimetic Pressure Sensor Based on Mn–Ag Electrochemical Reaction for Monitoring Rehabilitation Training of Athletes

Author:

Yang Ziyan1,Wang Qingzhou1,Yu Huixin1,Xu Qing1,Li Yuanyue1,Cao Minghui1,Dhakal Rajendra2,Li Yang3ORCID,Yao Zhao1

Affiliation:

1. College of Electronics and Information Qingdao University Qingdao 266071 China

2. Department of Computer Science and Engineering Sejong University Seoul 05006 South Korea

3. School of Integrated Circuits Shandong University Jinan 250101 China

Abstract

AbstractSelf‐powered pressure detection using smart wearable devices is the subject of intense research attention, which is intended to address the critical need for prolonged and uninterrupted operations. Current piezoelectric and triboelectric sensors well respond to dynamic stimuli while overlooking static stimuli. This study proposes a dual‐response potentiometric pressure sensor that responds to both dynamic and static stimuli. The proposed sensor utilizes interdigital electrodes with MnO2/carbon/polyvinyl alcohol (PVA) as the cathode and conductive silver paste as the anode. The electrolyte layer incorporates a mixed hydrogel of PVA and phosphoric acid. The optimized interdigital electrodes and sandpaper‐like microstructured surface of the hydrogel electrolyte contribute to enhanced performance by facilitating an increased contact area between the electrolyte and electrodes. The sensor features an open‐circuit voltage of 0.927 V, a short‐circuit current of 6 µA, a higher sensitivity of 14 mV/kPa, and outstanding cycling performance (>5000 cycles). It can accurately recognize letter writing and enable capacitor charging and LED lighting. Additionally, a data acquisition and display system employing the proposed sensor, which facilitates the monitoring of athletes’ rehabilitation training, and machine learning algorithms that effectively guide rehabilitation actions are presented. This study offers novel solutions for the future development of smart wearable devices.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3