Wnt3a‐Loaded Extracellular Vesicles Promote Alveolar Epithelial Regeneration after Lung Injury

Author:

Gao Lei123,Sun Yongping3,Zhang Xinye3,Ma Ding12,Xie An2,Wang Enyu2,Cheng Linzhao123,Liu Senquan123ORCID

Affiliation:

1. Department of Hematology The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui 230027 China

2. Blood and Cell Therapy Institute Anhui Provincial Key Laboratory of Blood Research and Applications University of Science and Technology of China Hefei Anhui 230027 China

3. School of Basic Medical Sciences Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui 230027 China

Abstract

AbstractCompromised regeneration resulting from the deactivation of Wnt/β‐catenin signaling contributes to the progression of chronic obstructive pulmonary disease (COPD) with limited therapeutic options. Extracellular cytokine‐induced Wnt‐based signaling provides an alternative option for COPD treatment. However, the hydrophobic nature of Wnt proteins limits their purification and use. This study devises a strategy to deliver the membrane‐bound wingless‐type MMTV integration site family, member 3A (Wnt3a) over a long distance by anchoring it to the surface of extracellular vesicles (EVs). The newly engineered Wnt3aWG EVs are generated by co‐expressing Wnt3a with two genes encoding the membrane protein, WLS, and an engineered glypican, GPC6ΔGPI‐C1C2. The bioactivity of Wnt3aWG EVs is validated using a TOPFlash assay and a mesoderm differentiation model of human pluripotent stem cells. Wnt3aWG EVs activate Wnt signaling and promote cell growth following human alveolar epithelial cell injury. In an elastase‐induced emphysema model, impaired pulmonary function and enlarged airspace are greatly restored by the intravenous delivery of Wnt3aWG EVs. Single‐cell RNA sequencing–based analyses further highlight that Wnt3aWG EV‐activated regenerative programs are responsible for its beneficial effects. These findings suggest that EV‐based Wnt3a delivery represents a novel therapeutic strategy for lung repair and regeneration after injury.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3