Room Temperature Crystallized Phase‐Pure α‐FAPbI3 Perovskite with In‐Situ Grain‐Boundary Passivation

Author:

Shi Zejiao1ORCID,Wang Yaxin1,Wang Yanyan1,Li Xiaoguo1,Yue Xiaofei1,Wang Haoliang1,Zhang Xin1,Deng Liangliang1,Li Chongyuan1,Wang Jiao1,Xie Zuoti2,Yang Yinguo3,Cong Chunxiao1,Yu Anran1,Zhan Yiqiang1ORCID

Affiliation:

1. Center for Micro Nano Systems School of Information Science and Technology (SIST) Fudan University Shanghai 200433 P. R. China

2. Department of Materials Science and Engineering MATEC Guangdong Technion – Israel Institute of Technology Shantou Guangdong 515063 P. R. China

3. School of Microelectronics Fudan University Shanghai 200433 P. R. China

Abstract

AbstractEnergy loss in perovskite grain boundaries (GBs) is a primary limitation toward high‐efficiency perovskite solar cells (PSCs). Two critical strategies to address this issue are high‐quality crystallization and passivation of GBs. However, the established methods are generally carried out discretely due to the complicated mechanisms of grain growth and defect formation. In this study, a combined method is proposed by introducing 3,4,5‐Trifluoroaniline iodide (TFAI) into the perovskite precursor. The TFAI triggers the union of nano‐sized colloids into microclusters and facilitates the complete phase transition of α‐FAPbI3 at room temperature. The controlled chemical reactivity and strong steric hindrance effect enable the fixed location of TFAI and suppress defects at GBs. This combination of well‐crystallized perovskite grains and effectively passivated GBs leads to an improvement in the open circuit voltage (Voc) of PSCs from 1.08 V to 1.17 V, which is one of the highest recorded Voc without interface modification. The TFAI‐incorporated device achieved a champion PCE of 24.81%. The device maintained a steady power output near its maximum power output point, showing almost no decay over 280 h testing without pre‐processing.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3