Physical Unclonable Functions with Hyperspectral Imaging System for Ultrafast Storage and Authentication Enabled by Random Structural Color Domains

Author:

Lin Xiaofeng12ORCID,Li Quhai1ORCID,Tang Yuqi3,Chen Zhaohan1,Chen Ruilian4,Sun Yingjuan12,Lin Wenjing12,Yi Guobin12,Li Quan35

Affiliation:

1. School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China

2. Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center Jieyang 515200 China

3. Institute of Advanced Materials and School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China

4. Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education Sun Yat‐sen University Guangzhou 510275 China

5. Materials Science Graduate Program Kent State University Kent OH 44242 USA

Abstract

AbstractPhysical unclonable function (PUF) is attractive in modern encryption technologies. Addressing the disadvantage of slow data storage/authentication in optical PUF is paramount for practical applications but remains an on‐going challenge. Here, a highly efficient PUF strategy based on random structural color domains (SCDs) of cellulose nanocrystal (CNC) is proposed for the first time, combing with hyperspectral imaging system (HIS) for ultrafast storage and authentication. By controlling the growth and fusion behavior of the tactoids of CNC, the SCDs display an irregular and random distribution of colors, shapes, sizes, and reflectance spectra, which grant unique and inherent fingerprint‐like characteristics that are non‐duplicated. Based on images and spectra, these fingerprint features are used to develop two sets of PUF key generation methods, which can be respectively authenticated at the user‐end and the manufacturer‐front‐end that achieving a high coding capacity of at least 22304. Notably, the use of HIS greatly shortens the time of key reading and generation (≈5 s for recording, 0.5–0.7 s for authentication). This new optical PUF labels can not only solve slow data storage and complicated authentication in optical PUF, but also impulse the development of CNC in industrial applications by reducing color uniformity requirement.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3