Lattice Strain Engineering on Metal‐Organic Frameworks by Ligand Doping to Boost the Electrocatalytic Biomass Valorization

Author:

Bai Wenjing1,Wang Xuan2,Xu Jianing1,Liu Yongzhuang1,Lou Yuhan1,Sun Xinyue1,Zhou Ao1,Li Hao3,Fu Gengtao2ORCID,Dou Shuo1,Yu Haipeng1

Affiliation:

1. Key Laboratory of Bio‐Based Material Science and Technology of Ministry of Education Northeast Forestry University Harbin 150040 P. R. China

2. Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China

3. Advanced Institute for Materials Research (WPI‐AIMR) Tohoku University Sendai 980–8577 Japan

Abstract

AbstractAs an efficient and environmental‐friendly strategy, electrocatalytic oxidation can realize biomass lignin valorization by cleaving its aryl ether bonds to produce value‐added chemicals. However, the complex and polymerized structure of lignin presents challenges in terms of reactant adsorption on the catalyst surface, which hinders further refinement. Herein, NiCo‐based metal‐organic frameworks (MOFs) are employed as the electrocatalyst to enhance the adsorption of reactant molecules through π‐π interaction. More importantly, lattice strain is introduced into the MOFs via curved ligand doping, which enables tuning of the d‐band center of metal active sites to align with the reaction intermediates, leading to stronger adsorption and higher electrocatalytic activity toward bond cleavage within lignin model compounds and native lignin. When 2′‐phenoxyacetophenone is utilized as the model compound, high yields of phenol (76.3%) and acetophenone (21.7%) are achieved, and the conversion rate of the reactants reaches 97%. Following pre‐oxidation of extracted poplar lignin, >10 kinds of phenolic compounds are received using the as‐designed MOFs electrocatalyst, providing ≈12.48% of the monomer, including guaiacol, vanillin, eugenol, etc., and p‐hydroxybenzoic acid dominates all the products. This work presents a promising and deliberately designed electrocatalyst for realizing lignin valorization, making significant strides for the sustainability of this biomass resource.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Heilongjiang Province

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3