Biomimetic Silk Architectures Outperform Animal Horns in Strength and Toughness

Author:

Liu Yawen12,Li Yushu3,Wang Qiyue1,Ren Jing2,Ye Chao2,Li Fangyuan1,Ling Shengjie24,Liu Yilun3,Ling Daishun15ORCID

Affiliation:

1. Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering State Key Laboratory of Oncogenes and Related Genes National Center for Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China

2. School of Physical Science and Technology ShanghaiTech University 393 Middle Huaxia Road Shanghai 201210 China

3. Laboratory for Multiscale Mechanics and Medical Science SV LAB School of Aerospace Xi'an Jiaotong University Xi'an 710049 China

4. Shanghai Clinical Research and Trial Center Shanghai 201210 China

5. World Laureates Association (WLA) Laboratories Shanghai 201203 China

Abstract

AbstractStructural biomimicry is an intelligent approach for developing lightweight, strong, and tough materials (LSTMs). Current fabrication technologies, such as 3D printing and two‐photon lithography often face challenges in constructing complex interlaced structures, such as the sinusoidal crossed herringbone structure that contributes to the ultrahigh strength and fracture toughness of the dactyl club of peacock mantis shrimps. Herein, bioinspired LSTMs with laminated or herringbone structures is reported, by combining textile processing and silk fiber “welding” techniques. The resulting biomimetic silk LSTMs (BS‐LSTMs) exhibit a remarkable combination of lightweight with a density of 0.6–0.9 g cm−3, while also being 1.5 times stronger and 16 times more durable than animal horns. These findings demonstrate that BS‐LSTMs are among the toughest natural materials made from silk proteins. Finite element simulations further reveal that the fortification and hardening of BS‐LSTMs arise primarily from the hierarchical organization of silk fibers and mechanically transferable meso‐interfaces. This study highlights the rational, cost‐effective, controllable mesostructure, and transferable strategy of integrating textile processing and fiber “welding” techniques for the fabrication of BS‐LSTMs with advantageous structural and mechanical properties. These findings have significant implications for a wide range of applications in biomedicine, mechanical engineering, intelligent textiles, aerospace industries, and beyond.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

ShanghaiTech University

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3