Visualizing Chain Growth of Polytelluoxane via Polymerization Induced Emission

Author:

Liu Chengfei12,Si Jinyan1,Cao Muqing1,Zhao Peng1,Dai Yiheng1,Xu Huaping1ORCID

Affiliation:

1. Key Lab of Organic Optoelectronics and Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China

2. Tsinghua‐Peking Joint Center for Life Sciences Beijing 100084 China

Abstract

AbstractVisualizing polymer chain growth is always a hot topic for tailoring structure‐function properties in polymer chemistry. However, current characterization methods are limited in their ability to differentiate the degree of polymerization in real‐time without isolating the samples from the reaction vessel, let alone to detect insoluble polymers. Herein, a reliable relationship is established between polymer chain growth and fluorescence properties through polymerization induced emission. (TPE‐C2)2‐Te is used to realize in situ oxidative polymerization, leading to the aggregation of fluorophores. The relationship between polymerization degree of growing polytelluoxane (PTeO) and fluorescence intensity is constructed, enabling real‐time monitoring of the polymerization reaction. More importantly, this novel method can be further applied to the observation of the polymerization process for growing insoluble polymer via surface polymerization. Therefore, the development of visualization technology will open a new avenue for visualizing polymer chain growth in real‐time, regardless of polymer solubility.

Funder

China Postdoctoral Science Foundation

Natural Science Foundation of Beijing Municipality

Postdoctoral Research Foundation of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3