iso‐BAI Guided Surface Recrystallization for Over 14% Tin Halide Perovskite Solar Cells

Author:

Chan Pok Fung1,Qin Minchao1,Su Chun‐Jen2,Ye Liping3,Wang Xuezhou4,Wang Yunfan5,Guan Xin3,Lu Zhen6,Li Gang6,Ngai To3,Tsang Sai Wing5,Zhao Ni4,Lu Xinhui1ORCID

Affiliation:

1. Department of Physics The Chinese University of Hong Kong New Territories Hong Kong SAR 999077 China

2. National Synchrotron Radiation Research Center Hsinchu Science Park Hsinchu 30076 Taiwan

3. Department of Chemistry The Chinese University of Hong Kong New Territories Hong Kong SAR 999077 China

4. Department of Electronic Engineering The Chinese University of Hong Kong New Territories Hong Kong SAR 999077 China

5. Department of Materials Science and Engineering City University of Hong Kong Kowloon Tong Hong Kong SAR 999077 China

6. Department of Electrical and Electronic Engineering The Hong Kong Polytechnic University Hung Hom Hong Kong SAR 999077 China

Abstract

AbstractTin‐based perovskite solar cells (PSCs) are promising environmentally friendly alternatives to their lead‐based counterparts, yet they currently suffer from much lower device performance. Due to variations in the chemical properties of lead (II) and tin (II) ions, similar treatments may yield distinct effects resulting from differences in underlying mechanisms. In this work, a surface treatment on tin‐based perovskite is conducted with a commonly employed ligand, iso‐butylammonium iodide (iso‐BAI). Unlike the passivation effects previously observed in lead‐based perovskites, such treatment leads to the recrystallization of the surface, driven by the higher solubility of tin‐based perovskite in common solvents. By carefully designing the solvent composition, the perovskite surface is effectively modified while preserving the integrity of the bulk. The treatment led to enhanced surface crystallinity, reduced surface strain and defects, and improved charge transport. Consequently, the best‐performing power conversion efficiency of FASnI3 PSCs increases from 11.8% to 14.2%. This work not only distinguishes the mechanism of surface treatments in tin‐based perovskites from that of lead‐based counterparts, but also underscores the critical role in designing tailor‐made strategies for fabricating efficient tin‐based PSCs.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3