Strain Regulation and Defect Passivation of FA‐Based Perovskite Materials for Highly Efficient Solar Cells

Author:

Zhang Linfeng1,Luo Guohui1,Zhang Weihao1,Yao Yuxin2,Ren Penghui1,Geng Xiuhong1,Zhang Yi1,Wu Xiaoping1,Xu Lingbo1,Lin Ping1,Yu Xuegong2,Wang Peng1ORCID,Cui Can1

Affiliation:

1. Key Laboratory of Optical Field Manipulation of Zhejiang Province Department of Physics Zhejiang Sci‐Tech University Hangzhou 310018 China

2. State Key Laboratory of Silicon and Advanced Semiconductor Materials & School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China

Abstract

AbstractFormamidine lead triiodide (FAPbI3) perovskites have attracted increasing interest for photovoltaics attributed to the optimal bandgap, high thermal stability, and the record power conversion efficiency (PCE). However, the materials still face several key challenges, such as phase transition, lattice defects, and ion migration. Therefore, external ions (e.g., cesium ions (Cs+)) are usually introduced to promote the crystallization and enhance the phase stability. Nevertheless, the doping of Cs+ into the A‐site easily leads to lattice compressive strain and the formation of pinholes. Herein, trioctylphosphine oxide (TOPO) is introduced into the precursor to provide tensile strain outside the perovskite lattice through intermolecular forces. The special strain compensation strategy further improves the crystallization of perovskite and inhibits the ion migration. Moreover, the TOPO molecule significantly passivates grain boundaries and undercoordinated Pb2+ defects via the forming of P═O─Pb bond. As a result, the target solar cell devices with the synergistic effect of Cs+ and TOPO additives have achieved a significantly improved PCE of 22.71% and a high open‐circuit voltage of 1.16 V (voltage deficit of 0.36 V), with superior stability under light exposure, heat, or humidity conditions.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3