Coordinative Stabilization of Single Bismuth Sites in a Carbon–Nitrogen Matrix to Generate Atom‐Efficient Catalysts for Electrochemical Nitrate Reduction to Ammonia

Author:

Zhang Wuyong12,Zhan Shaoqi34,Xiao Jie5,Petit Tristan5,Schlesiger Christopher6,Mellin Maximilian7,Hofmann Jan P.7,Heil Tobias8,Müller Riccarda9,Leopold Kerstin9,Oschatz Martin2ORCID

Affiliation:

1. Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province Qianwan Institute of CNITECH Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo Zhejiang 315201 P. R. China

2. Center for Energy and Environmental Chemistry Jena (CEEC Jena) Institute for Technical Chemistry and Environmental Chemistry Friedrich‐Schiller‐University Jena Philosophenweg 7a 07743 Jena Germany

3. Department of Chemistry‐BMC Uppsala University BMC Box 576 Uppsala S‐751 23 Sweden

4. Department of Chemistry University of Oxford 12 Mansfield Road Oxford OX1 3QZ UK

5. Helmholtz‐Zentrum Berlin für Materialien und Energie GmbH Albert‐Einstein‐Straße 15 12489 Berlin Germany

6. Institute for Optics and Atomic Physics Technische Universität Berlin Hardenbergstr. 36 10623 Berlin Germany

7. Surface Science Laboratory Department of Materials and Earth Sciences Technical University of Darmstadt Otto‐Berndt‐Straße 3 64287 Darmstadt Germany

8. Max Planck Institute of Colloids and Interfaces Department of Colloid Chemistry Am Mühlenberg 1 14476 Potsdam Germany

9. Institute of Analytical and Bioanalytical Chemistry Ulm University Albert‐Einstein‐Allee 11 89081 Ulm Germany

Abstract

AbstractElectrochemical nitrate reduction to ammonia powered by renewable electricity is not only a promising alternative to the established energy‐intense and non‐ecofriendly Haber–Bosch reaction for ammonia generation but also a future contributor to the ever‐more important denitrification schemes. Nevertheless, this reaction is still impeded by the lack of understanding for the underlying reaction mechanism on the molecular scale which is necessary for the rational design of active, selective, and stable electrocatalysts. Herein, a novel single‐site bismuth catalyst (Bi‐N‐C) for nitrate electroreduction is reported to produce ammonia with maximum Faradaic efficiency of 88.7% and at a high rate of 1.38 mg h−1 mgcat−1 at −0.35 V versus reversible hydrogen electrode (RHE). The active center (described as BiN2C2) is uncovered by detailed structural analysis. Coupled density functional theory calculations are applied to analyze the reaction mechanism and potential rate‐limiting steps for nitrate reduction based on the BiN2C2 model. The findings highlight the importance of model catalysts to utilize the potential of nitrate reduction as a new‐generation nitrogen‐management technology based on the construction of efficient active sites.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3