An Atomistic View on the Mechanism of Diatom Peptide‐Guided Biomimetic Silica Formation

Author:

Kozak Fanny12,Brandis Dörte12,Pötzl Christopher12,Epasto Ludovica M.12,Reichinger Daniela12,Obrist Dominik12,Peterlik Herwig3,Polyansky Anton4,Zagrovic Bojan4,Daus Fabian5,Geyer Armin5,Becker Christian FW12,Kurzbach Dennis12ORCID

Affiliation:

1. Institute of Biological Chemistry, Faculty of Chemistry University of Vienna Währinger Str. 38 Vienna 109 Austria

2. Vienna Doctoral School in Chemistry (DoSChem) University of Vienna Währinger Str. 42 Vienna 1090 Austria

3. Faculty of Physics University of Vienna Boltzmanngasse 5 Vienna 1090 Austria

4. Department of Structural and Computational Biology Max Perutz Labs University of Vienna Campus Vienna Biocenter 5 Vienna A‐1030 Austria

5. Faculty of Chemistry Philipps‐Universität Marburg 35032 Marburg Germany

Abstract

AbstractDeciphering nature's remarkable way of encoding functions in its biominerals holds the potential to enable the rational development of nature‐inspired materials with tailored properties. However, the complex processes that convert solution‐state precursors into solid biomaterials remain largely unknown. In this study, an unconventional approach is presented to characterize these precursors for the diatom‐derived peptides R5 and synthetic Silaffin‐1A1 (synSil‐1A1). These molecules can form defined supramolecular assemblies in solution, which act as templates for solid silica structures. Using a tailored structural biology toolbox, the structure‐function relationships of these self‐assemblies are unveiled. NMR‐derived constraints are employed to enable a recently developed fractal‐cluster formalism and then reveal the architecture of the peptide assemblies in atomistic detail. Finally, by monitoring the self‐assembly activities during silica formation at simultaneous high temporal and residue resolution using real‐time spectroscopy, the mechanism is elucidated underlying template‐driven silica formation. Thus, it is demonstrated how to exercise morphology control over bioinorganic solids by manipulating the template architectures. It is found that the morphology of the templates is translated into the shape of bioinorganic particles via a mechanism that includes silica nucleation on the solution‐state complexes’ surfaces followed by complete surface coating and particle precipitation.

Funder

European Research Council

HORIZON EUROPE European Research Council

Austrian Science Fund

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3