Natural Algaecide Sphingosines Identified in Hybrid Straw Decomposition Driven by White‐Rot Fungi

Author:

Hu Jing12,Kokoette Effiong12,Xu Caicai1,Huang Shitao1,Tang Tao1,Zhang Yiyi1,Liu Muyuan13,Huang Yuzhou1,Yu Shumiao1,Zhu Jie1,Holmer Marianne4,Xiao Xi123ORCID

Affiliation:

1. Ocean College Zhejiang University #1 Zheda Road Zhoushan Zhejiang 316021 China

2. Key Laboratory of Marine Ecological Monitoring and Restoration Technologies of Ministry of Natural Resources Shanghai 201206 China

3. Key Laboratory of Watershed Non‐point Source Pollution Control and Water Eco‐security of Ministry of Water Resources College of Environmental and Resources Sciences Zhejiang University Hangzhou Zhejiang 310058 China

4. Department of Biology University of Southern Denmark Odense 5230 Denmark

Abstract

AbstractHarmful algal blooms (HABs), which are promoted by eutrophication and intensified by global warming, occur worldwide. Allelochemicals, which are natural chemicals derived from plants or microbes, are emerging weapons to eliminate these blooms. However, the cost and technical challenges have limited the discovery of novel antialgal allelochemicals. Herein, the decomposition of agricultural straws is manipulated by white‐rot fungi and achieved elevated antialgal efficiency. The transcriptomic analysis reveals that nutrient limitation activated fungal decomposition. By using a comparative nontarget metabolomics approach, a new type of allelochemical sphingosines (including sphinganine, phytosphingosine, sphingosine, and N‐acetylsphingosine) is identified. These novel natural algaecides exhibit superior antialgal capability, with as high as an order of magnitude lower effective concentration on blooming species than other prevalent allelochemicals. The co‐expression relationship between transcriptomic and metabolomic results indicate that sphinganine is strongly correlated with the differentially expressed lignocellulose degradation unigenes. The algal growth suppression is triggered by the activation of programmed cell death, malfunction of algal photosystem and antioxidant system, the disruption on CO2 assimilation and light absorption. The sphingosines reported here are a new category of allelochemicals in addition to the well‐known antialgal natural chemicals, which are potential species‐specific agents for HABs control identified by multi‐omics methodology.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

China Scholarship Council

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3