Affiliation:
1. Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Advanced Energy Materials and Technologies University of Science and Technology Beijing Beijing 100083 China
2. Institute of Materials Science Technical University of Darmstadt 64 287 Darmstadt Germany
Abstract
AbstractUtilization of lithium (Li) metal anodes in all‐solid‐state batteries employing sulfide solid electrolytes is hindered by diffusion‐related dendrite growth at high rates of charge. Engineering ex‐situ Li‐intermetallic interlayers derived from a facile solution‐based conversion‐alloy reaction is attractive for bypassing the Li0 self‐diffusion restriction. However, no correlation is established between the properties of conversion‐reaction‐induced (CRI) interlayers and the deposition behavior of Li0 in all‐solid‐state lithium‐metal batteries (ASSLBs). Herein, using a control set of electrochemical characterization experiments with LixAgy as the interlayer in different battery chemistries, this work identifies that dendritic tolerance in ASSLBs is susceptible to the surface roughness and electronic conductivity of the CRI‐alloy interlayer. This work thereby tailors the CRI‐alloy interlayer from the typical mosaic structure to a hierarchical gradient structure by adjusting the pit corrosion kinetics from the (de)solvation mechanism to an adsorption model, yielding a smooth organic‐rich outer layer and a composition‐regulated inorganic‐rich inner layer composed mainly of lithiophilic LixAgy and electron‐insulating LiF. Ultimately, desirable roughness, conductivity, and diffusivity are integrated simultaneously into the tailored CRI‐alloy interlayer, resulting in dendrite‐free and dense Li deposition beneath the interlayer capable of improving battery cycling stability. This work provides a rational protocol for the CRI‐alloy interlayer specialized for ASSLBs.
Funder
National Key Research and Development Program of China
Natural Science Foundation of Beijing Municipality
Subject
General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献