Non‐Invasive Hemodynamic Monitoring System Integrating Spectrometry, Photoplethysmography, and Arterial Pressure Measurement Capabilities

Author:

Sirkiä Jukka‐Pekka1ORCID,Panula Tuukka1ORCID,Kaisti Matti1ORCID

Affiliation:

1. Department of Computing University of Turku Vesilinnantie 5 Turku 20500 Finland

Abstract

AbstractMinimally invasive and non‐invasive hemodynamic monitoring technologies have recently gained more attention, driven by technological advances and the inherent risk of complications in invasive techniques. In this article, an experimental non‐invasive system is presented that effectively combines the capabilities of spectrometry, photoplethysmography (PPG), and arterial pressure measurement. Both time‐ and wavelength‐resolved optical signals from the fingertip are measured under external pressure, which gradually increased above the level of systolic blood pressure. The optical channels measured at 434–731 nm divided into three groups separated by a group of channels with wavelengths approximately between 590 and 630 nm. This group of channels, labeled transition band, is characterized by abrupt changes resulting from a decrease in the absorption coefficient of whole blood. External pressure levels of maximum pulsation showed that shorter wavelengths (<590 nm) probe superficial low‐pressure blood vessels, whereas longer wavelengths (>630 nm) probe high‐pressure arteries. The results on perfusion indices and DC component level changes showed clear differences between the optical channels, further highlighting the importance of wavelength selection in optical hemodynamic monitoring systems. Altogether, the results demonstrated that the integrated system presented has the potential to extract new hemodynamic information simultaneously from macrocirculation to microcirculation.

Funder

HORIZON EUROPE European Innovation Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3