The Role of PRRC2B in Cerebral Vascular Remodeling Under Acute Hypoxia in Mice

Author:

Li Shuoshuo12ORCID,Hu Wenyu23,Gong Shenghui2,Zhang Ping23,Cheng Jinbo24,Wang Shukun2,Wang Yingyi2,Shi Wenjun24,Li Qianqian2,Wang Fengchao5,Yuan Zengqiang2

Affiliation:

1. School of Life Science Beijing University of Chinese Medicine Beijing 100029 China

2. The Brain Science Center Beijing Institute of Basic Medical Sciences Beijing 100850 China

3. School of Medicine University of South China Hengyang 421001 China

4. Center on Translational Neuroscience College of Life & Environmental Science Minzu University of China Beijing 100081 China

5. National Institute of Biological Sciences Beijing 102206 China

Abstract

AbstractHigh altitude exposure leads to various cognitive impairments. The cerebral vasculature system plays an integral role in hypoxia‐induced cognitive defects by reducing oxygen and nutrition supply to the brain. RNA N6‐methyladenosine (m6A) is susceptible to modification and regulates gene expression in response to environmental changes, including hypoxia. However, the biological significance of m6A in endothelial cell performance under hypoxic conditions is unknown. Using m6A‐seq, RNA immunoprcipitation‐seq, and transcriptomic co‐analysis, the molecular mechanism of vascular system remodeling under acute hypoxia is investigated. A novel m6A reader protein, proline‐rich coiled‐coil 2B (PRRC2B), exists in endothelial cells. PRRC2B knockdown promoted hypoxia‐induced endothelial cell migration by regulating alternative splicing of the alpha 1 chain of collagen type XII in an m6A‐dependent manner and the decay of matrix metallopeptidase domain 14 and ADAM metallopeptidase domain 19 mRNA in an m6A‐independent manner. In addition, conditional knockout of PRRC2B in endothelial cells promotes hypoxia‐induced vascular remodeling and cerebral blood flow redistribution, thus alleviating hypoxia‐induced cognitive decline. Therefore, PRRC2B is integral in the hypoxia‐induced vascular remodeling process as a novel RNA‐binding protein. These findings provide a new potential therapeutic target for hypoxia‐induced cognitive decline.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3