An Amphibious Fully‐Soft Centimeter‐Scale Miniature Crawling Robot Powered by Electrohydraulic Fluid Kinetic Energy

Author:

Xiong Quan1ORCID,Zhou Xuanyi1,Li Dannuo1,Ambrose Jonathan William1,Yeow Raye Chen‐Hua1

Affiliation:

1. Department of Biomedical Engineering National University of Singapore 15 Kent Ridge Cres Singapore 119276 Singapore

Abstract

AbstractMiniature locomotion robots with the ability to navigate confined environments show great promise for a wide range of tasks, including search and rescue operations. Soft miniature locomotion robots, as a burgeoning field, have attracted significant research interest due to their exceptional terrain adaptability and safety features. Here, a fully‐soft centimeter‐scale miniature crawling robot directly powered by fluid kinetic energy generated by an electrohydraulic actuator is introduced. Through optimization of the operating voltage and design parameters, the average crawling velocity of the robot is dramatically enhanced, reaching 16 mm s−1. The optimized robot weighs 6.3 g and measures 5 cm in length, 5 cm in width, and 6 mm in height. By combining two robots in parallel, the robot can achieve a turning rate of ≈3° s−1. Additionally, by reconfiguring the distribution of electrodes in the electrohydraulic actuator, the robot can achieve 2 degrees‐of‐freedom translational motion, improving its maneuverability in narrow spaces. Finally, the use of a soft water‐proof skin is demonstrated for underwater locomotion and actuation. In comparison with other soft miniature crawling robots, this robot with full softness can achieve relatively high crawling velocity as well as increased robustness and recovery.

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3