Identifying Radical Pathways for Cu(I)/Cu(II) Relay Catalyzed Oxygenation via Online Coupled EPR/UV–Vis/Near‐IR Monitoring

Author:

Wang Yongtao12,Zhou Yujia1,Sun Wenjing1,Wang Xinyu1,Yao Jia12,Li Haoran123ORCID

Affiliation:

1. Department of Chemistry Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China

2. Center of Chemistry for Frontier Technologies ZJU‐NHU United R&D Center Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China

3. State Key Laboratory of Chemical Engineering and College of Chemical and Biological Engineering Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China

Abstract

AbstractCopper‐catalyzed C─H oxygenation has drawn considerable attention in mechanistic studies. However, a comprehensive investigation combining radical pathways with a metal‐catalytic cycle is challenged by the intricate organic radicals and metallic intermediates. Herein, an online coupled EPR/UV–vis/near‐IR detecting method is developed to simultaneously monitor both reactive radical species and copper complex intermediates during the reaction. Focusing on copper‐catalyzed phenol oxygenation with cumene hydroperoxide, the short‐lived alkylperoxyl radical (EPR signal at g = 2.0143) as well as the unexpected square planar Cu(II)‐alkoxyl radical complex (near‐IR signal at 833 nm) are unveiled during the reaction, in addition to the observable phenoxyl radical in EPR, quinone product in UV–vis, and Cu(II) center in EPR. With a comprehensive picture of diverse intermediates evolving over the same timeline, a novel Cu(I)/Cu(II) proposed relay‐catalyzed sequential radical pathway. In this sequence, Cu(II) activates hydroperoxide through Cu(II)‐OOR into the alkylperoxide radical, while the reaction between Cu(I) and hydroperoxide leads to Cu(II)(•OR)OH with high H‐atom abstracting activity. These results provide a thorough understanding of the Cu(I)/Cu(II) relay catalysis for phenol oxygenation, setting the stage for mechanistic investigations into intricate radical reactions promoted by metallic complexes.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3