Atomistic Compositional Details and Their Importance for Spin Qubits in Isotope‐Purified Silicon Quantum Wells

Author:

Klos Jan1,Tröger Jan23,Keutgen Jens4,Losert Merritt P.5,Abrosimov Nikolay V.6,Knoch Joachim7,Bracht Hartmut2,Coppersmith Susan N.8,Friesen Mark5,Cojocaru‐Mirédin Oana49,Schreiber Lars R.110,Bougeard Dominique11ORCID

Affiliation:

1. JARA‐FIT Institute for Quantum Information Forschungszentrum Jülich GmbH & RWTH Aachen University 52074 Aachen Germany

2. Institute of Materials Physics University of Münster 48149 Münster Germany

3. Tascon GmbH 48149 Münster Germany

4. I. Physikalisches Institut IA RWTH Aachen University 52074 Aachen Germany

5. University of Wisconsin‐Madison Madison WI 53706 USA

6. Leibniz‐Institut für Kristallzüchtung (IKZ) 12485 Berlin Germany

7. Institute of Semiconductor Electronics RWTH Aachen University 52074 Aachen Germany

8. University of New South Wales Sydney 2025 Australia

9. INATECH, Albert‐Ludwigs Universität Freiburg 79110 Freiburg im Breisgau Germany

10. ARQUE Systems GmbH 52074 Aachen Germany

11. Institut für Experimentelle und Angewandte Physik Universität Regensburg 93040 Regensburg Germany

Abstract

AbstractUnderstanding crystal characteristics down to the atomistic level increasingly emerges as a crucial insight for creating solid state platforms for qubits with reproducible and homogeneous properties. Here, isotope concentration depth profiles in a SiGe/28Si/SiGe heterostructure are analyzed with atom probe tomography (APT) and time‐of‐flight secondary‐ion mass spectrometry down to their respective limits of isotope concentrations and depth resolution. Spin‐echo dephasing times and valley energy splittings EVS around have been observed for single spin qubits in this quantum well (QW) heterostructure, pointing toward the suppression of qubit decoherence through hyperfine interaction with crystal host nuclear spins or via scattering between valley states. The concentration of nuclear spin‐carrying 29Si is 50 ± 20ppm in the 28Si QW. The resolution limits of APT allow to uncover that both the SiGe/28Si and the 28Si/SiGe interfaces of the QW are shaped by epitaxial growth front segregation signatures on a few monolayer scale. A subsequent thermal treatment, representative of the thermal budget experienced by the heterostructure during qubit device processing, broadens the top SiGe/28Si QW interface by about two monolayers, while the width of the bottom 28Si/SiGe interface remains unchanged. Using a tight‐binding model including SiGe alloy disorder, these experimental results suggest that the combination of the slightly thermally broadened top interface and of a minimal Ge concentration of % in the QW, resulting from segregation, is instrumental for the observed large . Minimal Ge additions <1%, which get more likely in thin QWs, will hence support high EVS without compromising coherence times. At the same time, taking thermal treatments during device processing as well as the occurrence of crystal growth characteristics into account seems important for the design of reproducible qubit properties.

Funder

Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung und Forschung

Army Research Office

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3