Influence of the Reference Electrode on the Performance of Single‐Electrode Triboelectric Nanogenerators and the Optimization Strategies

Author:

Chen Zetong1,Dai Keren2,Chen Jiaxiang1,Zhuo Jingting1,Zhao Danna1,Ma Rui1,Zhang Xujing1,Li Xubiao1,Wang Xiaofeng3,Yang Guowei1,Yi Fang1ORCID

Affiliation:

1. School of Materials Science and Engineering Nanotechnology Research Center Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, State Key Laboratory of Optoelectronic Materials and Technologies Sun Yat‐sen University Guangzhou 510275 P. R. China

2. School of Mechanical Engineering Nanjing University of Science and Technology Nanjing 210094 P. R. China

3. Department of Precision Instrument Beijing Advanced Innovation Center for Integrated Circuits Tsinghua University Beijing 100084 P. R. China

Abstract

AbstractOwing to their unique advantages, single‐electrode triboelectric nanogenerators (SETENGs) have gained wide attention and have been applied in myriad areas, especially in the burgeoning flexible/wearable electronics. However, there is still a lack of a clear understanding of SETENGs. For example, previous simulation models generally put the reference electrode perpendicularly below the working part, but in practice, the reference electrode is designed in various scenarios and noticeable differences in outputs often occur when the reference electrode changes. With SETENGs developing towards wearability and portability, its reference electrode is often required to be constructed inside the device. Consequently, to achieve optimum performance, it is essential to understand the reference electrode's influence on the outputs. Here, the influence of the reference electrode on the performance of SETENGs is systematically investigated and the targeted optimization strategies are thoroughly revealed. First, theoretical simulations are conducted to investigate the reference electrode's effect on the performance of SETENGs with different structures and in various working modes. Secondly, the theoretical results are certified through corresponding experiments. Based on the results, the targeted optimization strategies for SETENGs are comprehensively demonstrated. This work provides fundamental guidance for the development of TENGs and the design and fabrication of new electronic devices.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3