Ultra‐Confined Phonon Polaritons and Strongly Coupled Microcavity Exciton Polaritons in Monolayer MoSi2N4 and WSi2N4

Author:

Zhang Juan1,Xia Yujie1,Peng Lei1,Zhang Yiming1,Li Ben1,Shu Le1,Cen Yan2,Zhuang Jun1,Zhu Heyuan1,Zhan Peng3,Zhang Hao14ORCID

Affiliation:

1. The State Key Laboratory of Photovoltaic Science and Technology and School of Information Science and Technology and Department of Optical Science and Engineering and Key Laboratory of Micro and Nano Photonic Structures (MOE) Fudan University Shanghai 200433 China

2. Department of Physics Fudan University Shanghai 200433 China

3. National Laboratory of Solid State Microstructures Collaborative Innovation Center of Advanced Microstructures and School of Physics Nanjing University Nanjing 210093 China

4. Yiwu Research Institute of Fudan University Chengbei Road Yiwu City Zhejiang 322000 China

Abstract

AbstractThe 2D semiconductors are an ideal platform for exploration of bosonic fluids composed of coupled photons and collective excitations of atoms or excitons, primarily due to large excitonic binding energies and strong light‐matter interaction. Based on first‐principles calculations, it is demonstrated that the phonon polaritons formed by two infrared‐active phonon modes in monolayer MoSi2N4 and WSi2N4 possess ultra‐high confinement factors of around ≈105 and 103, surpassing those of conventional polaritonic thin‐film materials by two orders of magnitude. It is observed that the first bright exciton possesses a substantial binding energies of 750 and 740 meV in these two monolayers, with the radiative recombination lifetimes as long as 25 and 188 ns, and the Rabi splitting of the formed cavity‐exciton polaritons reaching 373 and 321 meV, respectively. The effective masses of the cavity exciton polaritons are approximately 10−5me, providing the potential for high‐temperature quantum condensation. The ultra‐confined and ultra‐low‐loss phonon polaritons, as well as strongly‐coupled cavity exciton polaritons with ultra‐small polaritonic effective masses in these two monolayers, offering the flexible control of light at the nanoscale, probably leading to practical applications in nanophotonics, meta‐optics, and quantum materials.

Funder

National Key Research and Development Program of China

Natural Science Foundation of Shandong Province

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3