A Lossless Sink Based on Complex Frequency Excitations

Author:

Rasmussen Curtis1ORCID,Rosa Matheus I. N.1,Lewton Jacob1,Ruzzene Massimo1

Affiliation:

1. P. M. Rady Department of Mechanical Engineering University of Colorado Boulder Boulder CO 80309 USA

Abstract

AbstractThe creation of a sink in a lossless wave‐bearing medium is achieved using complex frequency signals—harmonic excitations that exponentially grow in time. The wave sink, where incident waves are confined to a point, has attracted interest for imaging and sensing since it may lead to arbitrarily small hotspots that surpass the diffraction limit. However, most methods of creating sinks require careful tuning, such as by impedance matching the sink to free space through the inclusion of loss, which imposes constraints on emerging applications. An alternative method, proposed here, relies on complex frequency excitations, bypassing the need to modify the scattering system by instead shaping the input signal. Eigenvalue zeros derived from a scattering formalism extended to the complex frequency plane reveal operating conditions that induce complete energy trapping under steady‐state conditions in a framework generally applicable to 2D and 3D media. To support the developed theory, an experiment is performed where a sink is realized using elastic waves on a plate with a circular cutout. These findings may lead to imaging and sensing applications relying on subwavelength focal points and nonlinear wave generation due to the high amplitudes achieved over short timescales.

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3